Topics

> Arithmetic Sequences —
$$a_n = a_1 + (n-1)d$$

Inverses

 \triangleright Direct Variation -y = kx

Inequalities in 2 variables

Scatter/Correlation

Interpolation/Extrapolation

Residuals

Word Problems

Sequences:

Find the 27th term of the sequence:

$$a_{27} = -4 + (27 - 1)(-3)$$

$$= -4 + (26)(-3)$$

$$= -4 - 78$$

$$|a_{27} = -82|$$

Find the missing terms:

$$63, 80, 97, 114, 131, 148$$

$$(1,63)+17+17+17(6,148)$$

$$d = \frac{148-63}{6-7} = 17$$

$$n$$
 a_{n} $(17,101)$ $(24,150)$ Given that $a_{17} = 101$ and $a_{24} = 150$. Find

the first term:

$$d = \frac{150 - 101}{24 - 17} = \frac{49}{7} = 7$$

$$101 = a_1 + (17 - 1)(7)$$

$$101 = a_1 + 112$$

$$-112$$

$$-11 = a_1$$

10, 6, 2,...
$$d = -4$$
 $a_n = 10 + (n-1)(-4)$
 $a_n = 10 - 4n + 4$
 $a_n = -4n + 14$

$$a_{83} = -4(83) + 14$$

$$a_{83} = -3/8$$

Find which term is -274

$$-288 = -4n$$
 -4
 -4
 -4
 -4

Inverses:

Find the inverse of each function:

a)
$$f(x) = -4x + 3$$
 $y = -4x + 3$
 $x = -4y + 3$

Switch $x = -4y$
 $\frac{x-3}{-y} = -\frac{4y}{-y}$

Solve for new y
 $y = \frac{x-3}{-y}$

b) $f(x) = \frac{3x-1}{2}$
 $y = \frac{3x-1}{2}$
 $2x = 3y - 1$
 $2x + 1 = 3y$
 $y = \frac{2x + 1}{3}$

Residuals:

The following data is modeled by the linear regression equation: y = 1.1x + 9.3. Find all the predicted values of y. Then find all the residuals.

v							
х	У	Predicted Residual					
1	10	10.4	4				
2	13	11.5	1.5				
3	12	12.6	6				
4	12	13.7	-1.7				
5	16	14.8	1.2				

$$1.1(1) + 9.3 = 10.4$$

$$1.1(2) + 9.3 = 11.5$$

$$1.1(3) + 9.3 = 12.6$$

$$1.1(4) + 9.3 = 13.7$$

$$1.1(5) + 9.3 = 14.8$$

Prediction eq

- The table gives the life expectancy of a child born in the United States in a given year.
 - a. Enter the data into the calculator. Use years since 1920 as the independent variable
 - Describe the correlation of the scatterplot.

positive, strong

c. Find the linear regression Equation - from call

V=.27x+57

d. What is the r-value? What does the r-value indicate?

r= 975

Strong positive

Years of Life Expected at Birth						
Year of Birth	Life Expectancy (years)					
1920 0	54.1					
1930 /0	59.7					
1940 20	62.9					
1950 30	68.2					
1960 40	69.7					
19 7 0 <i>50</i>	70.8					
1980 60	73.7					
1985 65	74.7					
1990 70	75.4					
1995 75	75.8					

Use the data to predict the life expectancy of a baby born in 2016. Explain how you determined your answer (interpolation or extrapolation). Is your answer reasonable in context?

2016 → X = 96

because 2016 ist bigger than 1995 y=.27(96)+57

people live to 83.

f. Sketch the residual plot. Does is imply that a linear model is appropriate?

Word: Ann is twice as old as Bill. The sum of their ages is 48 fewer than 5 times Bill's age. How old be they?

Let x = Bill's age

then 2x = Ann's age

x + 2x = 5x - 48

x = 24

3x = 5x - 48 They be: -5x - 5x -2x = -48 x - 211They be:

Bill is 24

Ann is 48

Graph the following Inequalities

$$y < -\frac{2}{3}x + 2$$

$$\int_{0}^{\infty} \int_{0}^{\infty} |\nabla y|^{2} dx$$

$$\int_{0}^{\infty} |\nabla y|^{2} dx$$

Write one solution:

$$4x+y \ge 4$$
 Solid
 $X-int: |$
 $y-int: |$
Test Point: $0 \ge 4$ False

Write one solution:

Find the missing terms:
$$102$$
, 71, 40 , 9 , -22, -53

$$(2,71) \qquad (5,-22) \qquad \frac{-22-71}{5-2} = -3/$$

Write a formula for this sequence:

$$a_n = 102 + (n-1)(-31)$$
 $102 + -31n + 31$

What is the 13th term?

$$a_{13} = -31(13) + 133$$

$$\sqrt{a_{13}} = -270$$

$$a_n = -3ln + 133$$